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A new extension of the Kolmogorov theory, for the two-point pressure–velocity
correlation, is studied by LES of homogeneous turbulence with a large inertial
subrange in order to capture the high Reynolds number nonlinear dynamics of the
flow. Simulations of both decaying and forced anisotropic homogeneous turbulence
were performed. The forcing allows the study of higher Reynolds numbers for the
same number of modes compared with simulations of decaying turbulence. The
forced simulations give statistically stationary turbulence, with a substantial inertial
subrange, well suited to test the Kolmogorov theory for turbulence that is locally
isotropic but has significant anisotropy of the total energy distribution. This has
been investigated in the recent theoretical studies of Lindborg (1996) and Hill (1997)
where the role of the pressure terms was given particular attention. On the surface
the two somewhat different approaches taken in these two studies may seem to
lead to contradictory conclusions, but are here reconciled and (numerically) shown
to yield an interesting extension of the traditional Kolmogorov theory. The results
from the simulations indeed show that the two-point pressure–velocity correlation
closely adheres to the predicted linear relation in the inertial subrange where also
the pressure-related term in the general Kolmogorov equation is shown to vanish.
Also, second- and third-order structure functions are shown to exhibit the expected
dependences on separation.

1. Introduction
In a typical turbulent flow there is production of turbulence kinetic energy at large

scales. This energy is on average transported to smaller scales where it is dissipated.
If there is a large separation between the energy-producing scales and the dissipative
scales we have a range, the inertial subrange, where the dynamics of the turbulence is
unaffected by the mechanisms of production and dissipation. In his classical papers
Kolmogorov (1941a,b) derived the now famous inertial-range laws. As a starting
point, and a central tool in the analysis, he used correlations of velocity differences
δu = u′ − u between two points, separated by a distance r, to analyse the turbulence
structures at small scales. These correlations

B
(n)
ij ..k = 〈δuiδuj · · · δuk〉 (1.1)



24 K. Alvelius and A. V. Johansson

are usually referred to as nth-order structure functions, and have been used extensively
in the search for an improved understanding of turbulence dynamics, see e.g. Frisch
(1995). Here 〈· · ·〉 denotes ensemble averaging over an infinite number of realizations.

Under the assumption of statistical stationarity and global isotropy Kolmogorov
(1941a) derived the equation

Blll = − 4
5
εr + 6ν

∂Bll

∂r
, (1.2)

relating the third- and second-order structure functions Blll and Bll , where the index
l denotes a velocity component in the same direction as r and ε is the dissipation
rate of the kinetic energy, K ≡ 〈uiui〉/2. In the present paper the index t will denote
a velocity component orthogonal to r (no summation over repeated indices l and t).
If the Reynolds number is high enough there is a range of separations r where the
viscous term in (1.2) can be neglected compared to the others and the well-known
four-fifths law for the third-order structure function Blll is recovered.

The derivation of (1.2) has been the subject of much attention recently (Lindborg
1996 and Hill 1997) in order to relax the condition of global isotropy to only require
local isotropy. In the work of Monin & Yaglom (1975) an analysis is given from
which they conclude that the pressure terms, including the two-point pressure–velocity
correlation

Pl(r) =
1

ρ

(〈p′ul〉 − 〈pu′l〉) , (1.3)

vanish in the inertial range. Lindborg (1996) showed that they in fact used the as-
sumption of global isotropy instead of local isotropy in their derivation. He further
showed that in order to reduce the general Kolmogorov equations, under the assump-
tion of global homogeneity, to the equation (1.2) the pressure related terms need to
balance each other. This gives a linear relation for the two-point pressure–velocity
correlation in the inertial range

Pl(r) = −Πllr, (1.4)

where Πij ≡ 2〈psij 〉/ρ is the pressure–strain rate tensor and sij ≡ 0.5(ui,j + uj,i) is the
fluctuating part of the strain tensor. The four-fifths law together with the additional
relationship (1.4) was, hence, shown to be valid in globally homogeneous and locally
isotropic turbulence. Hill (1997) derived the Kolmogorov equation (1.2) under the
weaker assumption of only requiring local homogeneity and local isotropy. In his
derivation he showed that the pressure term

Tij(r) =
1

ρ

(〈(
ui − u′i

)( ∂p

∂xj
− ∂p′

∂x′j

)〉
+

〈(
uj − u′j

)( ∂p
∂xi
− ∂p′

∂x′i

)〉)
(1.5)

is zero in the inertial range. Yaglom (1998) expressed a suspicion that the results
of Hill may contradict those of Lindborg. However, Lindborg (1999b) showed that
the relation (1.4) can be derived from the condition Tij = 0 in locally homogeneous
turbulence. The derivation of the relation Tij = 0 only requires local homogeneity,
local isotropy and incompressibility. It is hence valid for any scalar field p and
divergence-free vector field ui satisfying local homogeneity and local isotropy.

The pressure–strain rate has the role of redistributing energy from velocity com-
ponents with a high energy content to those with less. The modelling of Πij is a key
issue in turbulence closures based on the Reynolds stress transport equations. To a
large extent it determines the return-to-isotropy process in freely decaying turbulence,
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but also has a dominating role in the intercomponent energy distribution in strained
flows and turbulence subjected to rotation.

For separations close to the dissipative Kolmogorov scale η = (ν3/ε)1/4 the be-
haviour of the two-point correlations is obtained from Taylor expansion, from which
it is readily found that the structure functions vary as B(n) ∼ rn as r → 0. We may
note that this is a behaviour different from that in the inertial range. However, the
correlation Pl retains its linear (inertial range) behaviour all the way to zero separa-
tion. The theory of Lindborg (1996) in fact shows that the second-order term in the
Taylor expansion for Pl is small even for inertial-range separations.

It is difficult to measure the pressure fluctuations accurately in an experiment. In
a direct numerical simulation (DNS) the pressure fluctuations can be computed with
high accuracy. However, DNS are still limited to relatively low Reynolds numbers.
LES has the potential to give a large k−5/3 range for the energy spectrum, E(k), and
should be well suited for this investigation. For such an LES the number of grid
points needs to be large in the inertial subrange in order to investigate the possibility
of a linear behaviour of Pl and Blll and to verify that Tij = 0.

For the purpose of numerical investigation it is important to note that the Kol-
mogorov theory is valid at lower Reynolds number for statistically stationary tur-
bulence as compared to decaying turbulence as has recently been discussed and
illustrated numerically by Lindborg (1999a and Alvelius (1999). This can be at-
tributed to the increased extent of the equilibrium range of the spectrum, where
the rate of change of the spectral energy density can be neglected in the dynamic
equation. In the general Kolmogorov equation of non-stationary flows there is an
extra time derivative term of Bll which in addition to the viscous term also needs to
be small. This condition is trivially satisfied in the stationary case, whereas it is only
satisfied for sufficiently small separations in the two-point correlations of decaying
turbulence.

The main aim of the present study is to numerically test the theory (1.4) of
Lindborg (1996) for the two-point pressure–velocity correlation and to verify the
results from the classical Kolmogorov equation in globally anisotropic turbulence.
Also the conclusion of Hill (1997) that Tij = 0 in the inertial range is tested with the
aid of the present numerical simulation. For the reasons given above both decaying
and forced homogeneous simulations have been performed, where a better agreement
with theory is expected for the forced simulations.

2. The LES
The governing equations in LES are the filtered Navier–Stokes (NS) and continuity

equations for incompressible flow

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi

∂xj∂xj
− ∂τij

∂xj
+ f̄i, (2.1)

∂ūk

∂xk
= 0, (2.2)

where an overline denotes a filtered quantity and τij = uiuj − ūiūj is the subgrid-scale
(SGS) stress tensor which has to be modelled (the ensemble-averaged mean flow is
here zero); f̄i is a random volume force which is zero in the decaying turbulence
simulations. The modelled equations are solved in a box with periodic boundary
conditions. In the case of homogeneous turbulence the main task of the SGS model
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is to provide the correct energy transfer from the resolved scales to the subgrid scales.
Since the LES only solves for the filtered velocity field the small-scale behaviour as
r → 0 cannot be captured.

In the present simulations the flow is relatively well resolved in order to reduce
the importance of the SGS stress model. The results of Lindborg (1996) state that
the main contribution to the pressure is from the large scales of the flow, and the
direct influence from the SGS stress model is small. Also, the pressure spectrum
decays as k−7/3 in the inertial subrange, which yields a small contribution from
the smaller scales. This suggest that LES should be well suited for predictions of
quantities involving the pressure. Alvelius, Hallbäck & Johansson (1999) have shown
that indeed the contributions to e.g. the pressure–strain rate are dominated by the
large scales and that the contribution from the subgrid scales is negligible in an LES
with the Smagorinsky model.

2.1. The forcing

The random forcing method of Alvelius (1999) was used in the present simulations
to generate statistically stationary anisotropic turbulence states. The random volume
force is divergence free and implemented in Fourier space at low wavenumbers. It
introduces energy into the flow at large scales, which is, on average, transported
through the action of the energy cascade to smaller scales where it is dissipated. The
force is completely random in time and over the wavenumbers where it is active. The
randomness makes the force neutral in the sense that it does not introduce or enhance
any particular structure or timescale of the turbulence. The energy spectrum of the
forcing is Gaussian with the peak at wavenumber kf . Since the force is completely
random in time the contribution from the velocity–force correlation to the power
input is zero on average, and all the net power input comes from the force–force
correlation which is controllable. The total amount of power and its distribution
among the velocity components is determined a priori. It is hence possible to generate
statistically stationary anisotropic states by the forcing.

2.2. The SGS stress tensor

Both the Smagorinsky (1963) model and the spectral (Chollet 1984) model are used to
describe the SGS stress tensor. These have proved successful in various flow cases, e.g.
isotropic turbulence for the spectral model (Chasnov 1991) and plane channel flow
for the Smagorinsky model (Piomelli 1994). The anisotropy of the energy distribution
in the present simulations should not cause any problems for the spectral model since
there is a large range of scales between the large anisotropic scales and the small
isotropic scales where the model acts.

The spectral Chollet (1984) model is implemented in spectral space as

i kkτ̂ik = νT (k)k2 ˆ̄ui, (2.3)

νT (k) = Ko−3/2

[
0.441 + 15.2 exp

(−3.03kc
k

)]√
E(kc)

kc
, (2.4)

where a hat denotes the Fourier transform, k is the wavenumber vector and kc is
the cut-off wavenumber. The parameter Ko should be adjusted so that it equals the
Kolmogorov constant related to the kinetic energy spectrum. The derivation of the
model suggests that it should be used together with a ‘spherical’ spectral cut-off filter

Ĝ(k) =

{
1 if |k| 6 kc,
0 otherwise.

(2.5)
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The contribution from the SGS stresses to the pressure in the Poisson equation
enters in Fourier space as kikj τ̂ij . This term is however zero for the spectral model
which implies that the SGS stress model does not directly influence the pressure
which, however, the real SGS stress tensor does. The effect of the model only enters
indirectly through the resolved velocity field.

The spectral model, which was derived for a k−5/3 inertial energy spectrum at the
cut-off wavenumber, kc, has been modified to handle flows with an energy spectrum
slope steeper than k−5/3 at kc (Métais & Lesieur 1992). It has also been extended
to a physical space implementation (Métais & Lesieur 1992), which allows it to
handle non-homogeneous flows. Since we only consider homogeneous flows with
inertial subrange behaviour, none of these modifications are needed for the present
simulations.

The Smagorinsky (1963) model for the SGS stress tensor reads

τij = 1
3
τkkδij − 2νT s̄ij , (2.6)

νT = (CsL)2(2s̄pq s̄pq )1/2, (2.7)

where s̄ij = (ūi,j + ūj,i)/2, L is a filter width and Cs is the Smagorinsky constant.
The Smagorinsky model is implemented together with a ‘cubic’ spectral cut-off filter,
which in spectral space reads

Ĝ(k) =

{
1 if |ki| 6 kic, i = 1, 2, 3,
0 otherwise,

(2.8)

where kic are the cut-off wavenumbers in the three directions (i = 1, 2, 3). We follow
the approach of Deardorff (1970) and base the filter width on the grid volume
L ≡ π/(k1

c k
2
c k

3
c )

1/3, which is a reasonable choice for moderately strained meshes. The
trace τkk is not modelled and therefore treated together with the pressure.

The original Smagorinsky model was extended through the dynamical approach
(Germano et al. 1991), in which the Smagorinsky constant is determined locally by
the flow, to perform better in non-homogeneous flows. In particular this method
reduces the constant close to solid walls which eliminates the need for wall damping
functions. This constant is usually averaged over homogeneous directions. In the
present flow case, with three homogeneous directions, this would yield a Smagorinsky
constant that depends on time only. In the statistically stationary flow case the value
of the constant can be determined empirically so that a k−5/3 kinetic energy spectrum
is obtained, hence eliminating the need for dynamic determination of the model
parameter.

Another extension is the mixed model by Bardina, Ferziger & Reynolds (1980),
which has been found to give a relatively high correlation with the actual SGS stress
tensor in a priori tests, but does not give an extra contribution in the case of spectral
cut-off filters. This method has been extended to incorporate filters at different levels
in the formulation and improved to take into account the shape of the filter kernel
(Geurts 1997). The use of a wider filter does, however, give a larger length scale of
the model which might have an undesirable influence on the larger scales of the flow.

There are other, more recent, models that have the potential to yield good predic-
tions for the SGS stress tensor, e.g. the velocity estimation model (Domaradzki &
Saiki 1997) which is based on the definition of τij . These are, however, at an early
stage of development and their performance is therefore relatively unexplored. The
effect of backscatter might be important to model and an extra stochastic term, which
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acts on the smallest scales, is desirable. However, in all LES there will always be an
uncertainty with regards to the effect of the SGS model.

When applying a filter to the NS equations the result typically becomes dependent
on the coordinate system used to describe the filter. This is described in detail by
Oberlack (1997), where it is shown that the symmetries of the original equations are
generally not kept when applying a filter. In particular the equations may show a
non-invariant behaviour with e.g. system rotation, depending on the type of filter and
the SGS stress model, and the problem with the filter only enters when it is applied
explicitly. It has also been found (Vreman, Guerts & Kuerten 1994) that the use of
spectral cut-off filters yields a SGS stress tensor that is not realizable, in the sense that
the trace τkk can be negative in the flow. This implies that τkk is not suitable to use in
modelling, e.g. as a quantity to form a transport equation for. A priori tests show that
e.g. Gaussian and top-hat filters yield a higher correlation for the SGS model with
the SGS stresses (Liu, Meneveau & Katzl 1994). However, the spectral cut-off filter
keeps the maximum amount of information, for a given resolution, in the resolved
scales which reduces the importance of the model. Also, since for spectral cut-off
filters f = f, it is possible through explicit filtering of the equations to know what
filter you actually have in the simulations, which then allows for correct computation
of turbulence statistics.

The shape of the kinetic energy spectrum, at the smallest resolved scales, will
directly depend on the choice of the SGS-model parameter. For instance, a high value
of Ko (small Cs) will make the slope of E(k) smaller than k−5/3 whereas a smaller
value of Ko (larger Cs) will cause the slope to become steeper than k−5/3. This is seen
in e.g. Métais & Lesieur (1992) where they used the value Ko = 1.5 which resulted in
a k−2 spectrum instead of a k−5/3, which was obtained in the simulations by Chasnov
(1991, 1994) who used the larger value Ko = 2.1.

2.3. The numerical simulations

Simulations with 2563 spectral modes have been performed using a pseudospectral
method with a second-order mixed Crank–Nicolson and Adams–Bashforth time-
stepping method. The computational domain size is Lx = Ly = Lz = 2πL, which
gives a cut-off wavenumber of kc = 127k0, where k0 = 1/L. A 3/2 dealiasing method
is implemented in physical space where the nonlinear terms are calculated.

In the decaying turbulence simulations isotropic initial velocity fields are generated
with a given energy spectrum using random phases. The initial energy spectrum was
given with a k2 low-wavenumber slope. These velocity fields are strained axisym-
metrically in the x1-direction according to rapid distortion theory with a total strain
of c = 2.25 to yield a cubic domain and then relaxed towards isotropy. Results are
taken from the simulations when a self-similar decay of the energy spectrum has been
obtained.

The forced turbulence simulation starts from a zero velocity field, where the random
force generates the turbulence. The forcing wavenumber is set to a low value, kf = 2k0,
so that it will have little influence on the high-wavenumber dynamics. In order to
generate axisymmetric turbulence states the input power in the u2 and u3 components
is set to be 23 times larger than in the u1 component. Statistics are gathered from the
simulation when a statistically stationary state has been reached and the two-point
correlations have developed.

Since the small scales are modelled in the LES the Kolmogorov microscale is
unknown. This also leaves the Reynolds number as unknown. In the forced DNS of
Alvelius (1999) it is seen that kinertη ≈ 0.1, where kinert is the wavenumber at the end
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of the inertial subrange. If we take kinert = kc in the LES the Kolmogorov microscale
can be estimated as η = 0.1/kc. The small scale η is related to the viscosity ν through
η = (ν3/ε)1/4. The turbulence Reynolds number,

ReT =
4K2

νε
, (2.9)

in the forced and decaying turbulence simulations, can then be estimated to be as high
as ReT = 330 000 and ReT = 80 000, respectively. From DNS (Alvelius 1999) it is seen
that the compensated energy spectrum E(k)k5/3 actually has a bump at the end of the
inertial subrange (kη = 0.17) associated with a maximum in the dissipation spectrum.
This implies that E(k)k5/3 should actually increase, as it does in the LES close to kc,
before it decreases. If it is assumed that the cut-off wavenumber, kc, is localized at
the position of maximum dissipation, we get η = 0.17/kc (instead of 0.1/kc) which
gives the estimates ReT = 160 000 and ReT = 40 000 for the two simulations.

In isotropic turbulence the dissipation is related to the Taylor microscale, λ, through

ε =
10νK

λ2
. (2.10)

Using the velocity scale q = (2K/3)1/2 the Taylor-microscale Reynolds number Reλ
can, in the isotropic case, be expressed as

Reλ =
(

15
9

)1/2
Re

1/2
T . (2.11)

With the lower estimates of ReT for the forced and decaying simulations the Taylor-
microscale Reynolds number is estimated through (2.11) as Reλ = 516 and Reλ = 258.

3. Results
The kinetic energy spectrum, the pressure spectrum and the second- and third-

order structure functions are computed in order to verify the existence of an inertial
subrange and to identify the range of scales for which the inertial laws are valid. In
particular the agreement of the simulation results with the theory of Lindborg (1996)
for Pl is compared to the corresponding agreement for the theory of the second- and
third-order structure functions. The degree of Reynolds stress anisotropy is measured
by the anisotropy tensor aij ≡ 〈uiuj〉/K − 2δij/3. The results from the simulations are
evaluated at the anisotropy value a11 = −0.15 for the decaying turbulence case and
at the statistically stationary value a11 = −0.2 for the forced turbulence case. In the
present section results are only presented for the spectral model with Ko = 2.2. In § 4
results are given for the Smagorinsky model, with Cs = 0.1, and the spectral model
with Ko = 1.7, in order to investigate how sensitive the results are to the choice of
SGS model.

The first and second hypotheses of similarity by Kolmogorov (1941b) give the
following relation for the second-order structure function:

Bll = C(εr)2/3, (3.1)

valid for inertial-subrange separations. C is a constant, independent of the flow. The
spectral equivalent of this relation is the inertial subrange for the kinetic energy
spectrum

E(k) = C1ε
2/3k−5/3. (3.2)

The second-order structure function Bll in figure 1 shows that an inertial subrange
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Figure 1. The two-point correlations Bll/(C(εL)2/3) for l = 1, 2, 3 (solid curves) and the curve

(r/L)2/3 for which each dot indicates a grid point in the simulations. (a) Decaying turbulence,
C = 1.7. (b) Forced turbulence, C = 2.1.
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Figure 2. The compensated energy spectra 3Eααk
5/3/ε2/3, α = 1, 2, 3. (a) Decaying turbulence.

(b) Forced turbulence.

can be perceived in both simulations. The different components of Bll collapse onto
each other. The decaying simulation yields the value C = 1.7 of the Kolmogorov
constant related to this structure function whereas the forced simulation gives a
larger inertial subrange with the value C = 2.1. In a comparison with several different
experiments Antonia et al. (1996) obtained the value C = 2.0 which is in good
agreement with the results from the present forced simulation. For larger values of r
in the decaying turbulence the longitudinal second-order structure function for l = 1
(the axis of symmetry) falls somewhat below the others for l = 2, 3 (which collapse).

An inertial subrange yields a constant value of 3Eααk
5/3/ε2/3. In figure 2 the inertial

subrange appears at the high end of wavenumbers in the simulations with a cusp
(typical for this type of LES) close to the cut-off wavenumber kc. Both simulations
(figure 2) give the Kolmogorov constant C1 = 2.0 related to the energy spectrum. The
inertial law is however valid in a slightly wider range for the forced simulation and
at lower wavenumbers the deviation from the inertial law is much smaller compared
to the decaying turbulence simulation.

The values of C1 presented in the literature vary. Chasnov (1991) presents values
found in experiments and simulations which vary between C1 = 1.34 and 2.45.
Praskovsky & Oncley (1994) found in their measurements that C1 decreased with
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Figure 3. The two-point correlations −5Blll/(4εL), l = 1, 2, 3 (solid curves), −15Bltt/(4εL) (small
dotted curves) and the curve r/L (large dots). (a) Decaying turbulence. (b) Forced turbulence.

increasing Reynolds number. There is a theoretical relation, at infinite Reynolds
number, between the two Kolmogorov constants C1 = 0.76C (Monin & Yaglom
1975). The finite Reynolds number in the present simulations gives C1/C = 1.18 from
the decaying simulation and C1/C = 0.95 from the forced simulation. Van Atta &
Chen (1970) obtained the ratio C1/C = 0.92, where they attributed the difference
with theory to the spectral contribution outside the inertial subrange.

The tensor Bijk Bijk is completely determined by the two components Blll and Bltt .
These are related through the incompressibility condition (Monin & Yaglom 1975)

Bltt =
1

6

d

dr
(rBlll ), (3.3)

which together with the four-fifths law in the inertial range

Blll = − 4
5
εr (3.4)

gives that

Bltt = − 4
15
εr. (3.5)

The functional form of the theoretical inertial-range relations can simply be derived
from dimensional analysis. The difference between the relations (3.4), (3.5) and (1.4)
compared to (3.1) and (3.2) is that the unknown constants are obtained from the
Navier–Stokes equations.

Figure 3 shows the third-order structure functions Blll and Bltt . In the forced
simulation there is a good agreement between the results and theory while in the
decaying simulation the theory is only seen to be approximately satisfied. In the forced
case both Blll and Bltt adhere closely to the expected line over a span of separations
that cover about a decade.

It is apparent that the second-order structure function follows its theoretical be-
haviour longer than the third-order structure functions. This can be attributed to the
fact that only the derivatives of Bll have to be zero at the separation r/L = π (half
the box length), while the functions Blll and Bltt themselves have to be zero at the
same separation. However, this behaviour is also seen in experimental measurements
which suggests that the reason could be dynamic. The real inertial subrange should
here be seen as the region where the third-order structure functions follow their well
known theoretical behaviour.
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Figure 4. The pressure spectrum Eppk
7/3
0 /ε4/3 (solid curve) and the (dotted) line Cp(k/k0)−7/3

with Cp = 5.0.

Batchelor (1953) showed that the two-point pressure correlation 〈(δp)2〉/ρ2 should
be equal to (Bll )

2 ∼ r4/3 in the inertial subrange. This readily gives that the pressure
spectrum, Epp , in the inertial subrange should be of the form

Epp = Cpε
4/3k−7/3, (3.6)

where Cp is a universal constant. George, Beuther & Arndt (1984) verified this
behaviour in the mixing layer of an axisymmetric jet. Elliot (1972) and Albertson
et al. (1998) obtained lower values of the exponent. From the forced simulation a
small region with a k−7/3 slope is perceived (figure 4) for Epp with Cp = 5.0 in the
inertial subrange. Close to kc the pressure spectrum falls below the inertial-range law
as opposed to the kinetic energy spectrum.

The simulations are globally homogeneous and locally isotropic. In a globally
homogeneous case it directly follows from the condition Tij = 0 that

∂Pi

∂rj
+
∂Pj

∂ri
= −2Πij , (3.7)

where the pressure–strain rate tensor Πij is non-zero for globally anisotropic cases
such as the present. Putting both free indices equal to l gives

∂Pl

∂rl
= −Πll , (3.8)

and the relation (1.4) is simply recovered by integration of (3.8).
In the decaying simulation (figure 5a) the low Reynolds number prevents conclusive

validation of the theory. From figure 5(b), on the other hand, we see that the pressure–
velocity correlation, Pl , follows its theoretical linear behaviour for separations well
into the inertial subrange for the forced simulation. Hence, Pl is clearly seen to be
non-zero and, in accordance with the theory of Lindborg (1996), of the same order of
magnitude as the third-order structure functions and the pressure–strain term towards
the end of the inertial subrange.

The pressure term Tij is much smaller than ε (figure 6) for the same range of
separations r where Pl adheres to the theoretical linear behaviour. Figures 5 and 6
give a numerical verification of the theories of Lindborg (1996) and Hill (1997).
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Figure 5. The two-point correlations −Pl/ΠllL, l = 1, 2, 3 (solid curves) and the line r/L (dots).
(a) Decaying turbulence. (b) Forced turbulence.
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Figure 6. The tensor components Tij (r)/ε, averaged over all directions of r, for the forced simula-
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4. Sensitivity to choice of SGS stress model
Since the effect of the SGS stress model on the results is unknown it is important to

investigate how sensitive the results are to its choice. This is done by also performing
the forced simulations with the Smagorinsky model, and with another choice of Ko
for the spectral model.

The Smagorinsky constant was set to Cs = 0.1, which yields an inertial subrange
for the kinetic energy spectrum (figure 7a) with a Kolmogorov constant C1 = 1.7.
The second-order structure function Bll shows the same behaviour as for the spectral
model (with Ko = 2.2), with the Kolmogorov constant C = 2.0. This gives the ratio
C1/C = 0.85, which is actually closer to the theoretical value (0.76). The third-order
structure functions agree well with theory (figure 7b) and it is verified that an inertial
subrange exists also in these simulations. The two-point pressure–velocity correlation
shows a good adherence to the theoretical linear behaviour (figure 8a) in the inertial
subrange. The pressure spectrum also gives the same behaviour as the spectral model,
with the constant Cp = 5.0.

As is seen in the simulations by Chasnov (1991) and Métais & Leisieur (1992)
the shape of the kinetic energy spectrum is strongly influenced by the SGS model
parameters. The spectral model with Ko = 1.7 indeed yields a kinetic energy spectrum
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Figure 7. (a) The compensated kinetic energy spectrum E(k)k5/3/ε2/3 for the Smagorinsky model
(dashed curve) and the spectral model with Ko = 1.7 (solid curve) together with the constant
value 1.7 (dotted line). (b) The two-point correlations (using the Smagorinsky model) −5Blll/(4εL),
l = 1, 2, 3 (solid curves), −15Bltt/(4εL) (small dotted curves) and the curve r/L (large dots).
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Figure 8. The two-point correlations −Pl/ΠllL, l = 1, 2, 3 (solid curves) and the line r/L (dots).
(a) With the Smagorinsky model. (b) With the spectral model (Ko = 1.7).

(figure 7a) with a shape different from the simulation with Ko = 2.2. There is no clear
region with a k−5/3 slope, and the compensated kinetic energy spectrum suggests a
Kolmogorov constant in the range C1 ≈ 1.6–2.0 for this case. The second- and third-
order structure functions, however, still agree well with theory (with C = 2.0), and
the pressure–velocity correlation adheres closely to the theoretical linear behaviour
(figure 8b). The pressure spectrum is, however, slightly changed to yield a constant
Cp = 6.0.

5. Conclusions
The forced simulation gives an inertial subrange which is in good agreement with

the Kolmogorov theories for the energy spectrum and the second- and third-order
structure functions. These simulations also give a pressure–velocity correlation which
agrees well with the new theory of Lindborg (1996) and verifies the vanishing of Tij

in the inertial subrange (Hill 1997). In the decaying simulation the Reynolds number
is too low to allow a conclusive validation of the theory. The forcing methodology,
hence, is here essential in extending the range of problems for which the simulation



Computations of two-point pressure–velocity correlations 35

tool can fruitfully be used to study turbulence dynamics. The results from the LES are
validated also by use of different SGS stress models and different model parameters.
Even though the kinetic energy spectrum shows a relatively strong dependence on the
model, the results for the two-point correlations are more or less insensitive.

The new extensions (Lindborg 1996 and Hill 1997) of the Kolmogorov theory are
hence, for the first time verified from (numerical) experiments. The results show, as
expected from the theory, that when the turbulence is globally anisotropic then the
pressure–velocity correlation in fact varies linearly in a major part of the inertial
subrange. The pressure term Tij is also shown to be small in the inertial range which
is in agreement with the theory of Hill (1997) and with the linear behaviour of Pl .
The behaviour of Blll and Bltt also verifies that the Kolmogorov equation is correct
under the assumption of local isotropy even when there is significant anisotropy in the
energy distribution on the large scales. This is actually the first numerical verification
of the Kolmogorov equations in globally anisotropic turbulence.

The authors wish to thank Dr Erik Lindborg for fruitful discussions on the present
topic.
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